Domain edv-zubehör-shop.de kaufen?

Produkt zum Begriff Datenanalyse:


  • Datenanalyse mit R' Fortgeschrittene Verfahren
    Datenanalyse mit R' Fortgeschrittene Verfahren

    Dieses Buch erklärt, wie man mit R fortgeschrittene statistische Analysen durchführt. Die Techniken wurden dabei so ausgewählt, dass sie den Stoff im Masterstudiengang Psychologie und ähnlicher Studiengänge abdecken. In 10 eigenständigen Kapiteln werden die statistischen Verfahren anhand einführender und komplexer Datenbeispiele erläutert. Die Analyseergebnisse werden ausführlich interpretiert. Dabei legt das Buch besonderen Wert auf illustrative grafische Ergebnisdarstellungen. Auch die Voraussetzungen der Verfahren werden diskutiert und, soweit möglich, in R geprüft. Zu jedem Kapitel stehen Datendateien und ein R Script zur Verfügung, damit die Analyse schnell und unkompliziert nachvollzogen werden kann. Das Buch setzt Grundkenntnisse in R voraus und gibt ergänzende Literatur für die theoretischen Grundlagen und die Vertiefung für die fortgeschrittene Datenanalyse an. 

    Preis: 27.99 € | Versand*: 0 €
  • Datenanalyse mit Python (McKinney, Wes)
    Datenanalyse mit Python (McKinney, Wes)

    Datenanalyse mit Python , Die erste Adresse für die Analyse von Daten mit Python Das Standardwerk in der 3. Auflage, aktualisiert auf Python 3.10 und pandas 1.4 Versorgt Sie mit allen praktischen Details und mit wertvollem Insiderwissen, um Datenanalysen mit Python erfolgreich durchzuführen Mit Jupyter-Notebooks für alle Codebeispiele aus jedem Kapitel Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.10 und pandas 1.4, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy und Jupyter kennen. Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und Zusatzmaterial zum Buch sind auf GitHub verfügbar. Aus dem Inhalt: Nutzen Sie Jupyter Notebook und die IPython-Shell für das explorative Computing Lernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennen Setzen Sie die Datenanalyse-Tools der pandas-Bibliothek ein Verwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von Daten Erstellen Sie interformative Visualisierungen mit matplotlib Wenden Sie die GroupBy-Mechanismen von pandas an, um Datensätze zurechtzuschneiden, umzugestalten und zusammenzufassen Analysieren und manipulieren Sie verschiedenste Zeitreihendaten Erproben Sie die konkrete Anwendung der im Buch vorgestellten Werkzeuge anhand verschiedener realer Datensätze , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Auflage: 3. Auflage, Erscheinungsjahr: 20230302, Produktform: Kartoniert, Titel der Reihe: Animals##, Autoren: McKinney, Wes, Übersetzung: Lichtenberg, Kathrin~Demmig, Thomas, Auflage: 23003, Auflage/Ausgabe: 3. Auflage, Seitenzahl/Blattzahl: 556, Keyword: Big Data; Data Mining; Data Science; IPython; Jupyter; Jupyter notebook; NumPy; Python 3.10; matplotlib; pandas 1.4, Fachschema: Data Mining (EDV)~Analyse / Datenanalyse~Datenanalyse~Datenverarbeitung / Simulation~Informatik~Informationsverarbeitung (EDV)~Internet / Programmierung~Programmiersprachen, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Warengruppe: HC/Programmiersprachen, Fachkategorie: Data Mining, Thema: Verstehen, Text Sprache: ger, Originalsprache: eng, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Dpunkt.Verlag GmbH, Verlag: Dpunkt.Verlag GmbH, Verlag: O'Reilly, Länge: 241, Breite: 168, Höhe: 35, Gewicht: 999, Produktform: Kartoniert, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Vorgänger: 2660049, Vorgänger EAN: 9783960090809 9783960090007 9783864903038 9783958750739, andere Sprache: 9781491957660, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0120, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,

    Preis: 44.90 € | Versand*: 0 €
  • Datenanalyse mit R' Beschreiben, Explorieren, Schätzen und Testen
    Datenanalyse mit R' Beschreiben, Explorieren, Schätzen und Testen

    Nach einer kurzen generellen Einführung in R wird ausführlich erläutert, wie Daten eingelesen und bearbeitet werden können. Danach erklärt das Buch Verfahren der deskriptiven und explorativen Statistik. Die Inferenzstatistik wird durch Ausprobieren und Simulationen eingeführt, gefolgt von einer ausführlichen Darstellung der gängigen inferenzstatistischen Verfahren. Den Abschluss machen die explorative Faktorenanalyse und die Clusteranalyse. Alle Verfahren werden den LeserInnen mittels zahlreicher Datensätze zur Verfügung gestellt, und jedes Kapitel demonstriert die Analysen anhand einfacher und komplexer Datenbeispiele aus dem Forschungsalltag. Nicht zu Unrecht ist R inzwischen in der sozialwissenschaftlichen Datenanalyse etabliert und manche neueren Verfahren stehen nur dort zur Verfügung. Die LeserInnen werden über das gesamte Buch hinweg immer wieder ermuntert, die Vielfalt und Flexibilität von R selbst auszuprobieren.

    Preis: 29.95 € | Versand*: 0 €
  • Datenanalyse mit R: Fortgeschrittene Verfahren (Burkhardt, Markus~Titz, Johannes~Sedlmeier, Peter)
    Datenanalyse mit R: Fortgeschrittene Verfahren (Burkhardt, Markus~Titz, Johannes~Sedlmeier, Peter)

    Datenanalyse mit R: Fortgeschrittene Verfahren , Dieses Buch erklärt ausgewählte Techniken der fortgeschrittenen Datenanalyse. In 10 eigenständigen Kapiteln werden dazu einführende und komplexe Datenbeispiele in R analysiert und interpretiert. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Erscheinungsjahr: 20220701, Produktform: Kartoniert, Titel der Reihe: Pearson Studium - Psychologie##, Autoren: Burkhardt, Markus~Titz, Johannes~Sedlmeier, Peter, Seitenzahl/Blattzahl: 304, Themenüberschrift: COMPUTERS / Mathematical & Statistical Software, Keyword: Datenanalyse Fortgeschrittene; Diagnostik; Methodik; R Programm; Statistik, Fachschema: Analyse / Datenanalyse~Datenanalyse~Psychologie / Forschung, Experimente, Methoden~Erforschung~Forschung~Datenverarbeitung / Anwendungen / Mathematik, Statistik, Fachkategorie: Psychologie~Wahrscheinlichkeitsrechnung und Statistik~Mathematische und statistische Software, Warengruppe: HC/Psychologie/Psychologische Ratgeber, Fachkategorie: Forschungsmethoden, allgemein, Thema: Verstehen, Text Sprache: ger, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Pearson Studium, Verlag: Pearson Studium, Verlag: Pearson Studium, Länge: 241, Breite: 173, Höhe: 17, Gewicht: 525, Produktform: Kartoniert, Genre: Geisteswissenschaften/Kunst/Musik, Genre: Geisteswissenschaften/Kunst/Musik, Herkunftsland: NIEDERLANDE (NL), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0004, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, WolkenId: 2781061

    Preis: 34.95 € | Versand*: 0 €
  • Was sind Verhaltensdaten und wie werden sie in der Datenanalyse verwendet?

    Verhaltensdaten sind Informationen über das Verhalten von Benutzern im Internet, wie Klicks, Suchanfragen und Interaktionen. In der Datenanalyse werden Verhaltensdaten verwendet, um Muster und Trends zu identifizieren, Benutzerverhalten zu verstehen und personalisierte Empfehlungen zu erstellen. Durch die Analyse von Verhaltensdaten können Unternehmen ihre Produkte und Dienstleistungen verbessern und ihre Marketingstrategien optimieren.

  • Was sind die typischen Anwendungen von Affinitätsmatrizen in der Datenanalyse?

    Affinitätsmatrizen werden verwendet, um Ähnlichkeiten zwischen Objekten oder Merkmalen zu identifizieren. Sie werden häufig in der Clusteranalyse eingesetzt, um Gruppen von ähnlichen Datenpunkten zu bilden. Zudem dienen sie zur Visualisierung von Beziehungen in Netzwerken oder sozialen Interaktionen.

  • Wie kann Datenanalyse dazu beitragen, Unternehmensprozesse zu optimieren und die Effizienz zu steigern?

    Durch Datenanalyse können Unternehmen Muster und Trends in ihren Prozessen identifizieren, um Engpässe und ineffiziente Abläufe zu erkennen und zu optimieren. Die Analyse von Daten ermöglicht es, fundierte Entscheidungen zu treffen und Prozesse kontinuierlich zu verbessern. Durch die Automatisierung von Prozessen auf Basis von Datenanalysen können Unternehmen Zeit und Ressourcen einsparen und die Effizienz steigern.

  • Was sind die grundlegenden Konzepte und Anwendungen der Faktorenanalyse in der statistischen Datenanalyse?

    Die Faktorenanalyse ist eine Technik zur Reduzierung der Dimensionalität von Daten, indem sie die zugrunde liegenden Strukturen oder Faktoren identifiziert, die die Beziehung zwischen den Variablen erklären. Sie wird häufig verwendet, um verborgene Muster oder Beziehungen in großen Datensätzen zu entdecken. Die Anwendungen reichen von der Psychologie über die Wirtschaft bis hin zur Marktforschung.

Ähnliche Suchbegriffe für Datenanalyse:


  • Steinberg Systems Schichtdickenmessgerät - 0 - 2000 μm - ±3 % + 1 μm - Datenanalyse SBS-TG-3000
    Steinberg Systems Schichtdickenmessgerät - 0 - 2000 μm - ±3 % + 1 μm - Datenanalyse SBS-TG-3000

    In Sekundenschnelle Lackschichten messen – mit dem Schichtdickenmessgerät von Steinberg Systems kein Problem! Das hochsensible Gerät ermittelt automatisch, wie stark verschiedene Schichten, wie etwa Farbe oder Kunststoffe, auf ferromagnetischen Metallen sind. Die vielen Funktionen und exakten Messergebnisse machen das Gerät zum Muss in jeder Autowerkstatt. Umfangreicher geht’s kaum: Das Lackmessgerät bietet neben verstellbarer Display-Helligkeit und Alarm-Lautstärke viele Funktionen: automatisch rotierende Anzeige und Abschaltung, Analysesoftware mit verschiedenen Darstellungen der Messwerte, verschiedene Modi sowie die Batterie-Warnanzeige. Die gemessenen Werte übertragen Sie per Bluetooth bequem auf den Rechner. Dank spezieller App behalten Sie den Überblick über die Daten. Der Lacktester verfügt zudem über eine integrierte, hochempfindliche Sonde. Diese misst auf ±3 % + 1 μm genau. Vor der Messung justieren Sie das Gerät schnell und einfach mittels Nullpunkt- oder Mehrpunktkalibrierung. Dazu verwenden Sie im besten Fall eine unbeschichtete Probe des Substrates, das Sie messen möchten. Alternativ eignet sich auch eine glatte Nullplatte. Mit dem Lackdicken-Messer prüfen Sie die Dicke nichtmagnetischer Schichten auf verschiedenen Oberflächen, beispielsweise auf Edelstahl, Eisen, Aluminium oder Kupfer. Dazu nutzt das Gerät die Wirbelstromprüfung. Diese ermöglicht Ihnen die zerstörungsfreie Messung mit einem hohen Messbereich von 0 - 2000 μm. Die Ergebnisse lesen Sie bequem auf dem klaren LCD ab.

    Preis: 109.00 € | Versand*: 0.00 €
  • Kawaii anime pc computer matte mäuse tastaturen zubehör niedliches mauspad schreibtisch büro großes
    Kawaii anime pc computer matte mäuse tastaturen zubehör niedliches mauspad schreibtisch büro großes

    Kawaii anime pc computer matte mäuse tastaturen zubehör niedliches mauspad schreibtisch büro großes

    Preis: 7.29 € | Versand*: 1.99 €
  • Datenanalyse mit R' Fortgeschrittene Verfahren
    Datenanalyse mit R' Fortgeschrittene Verfahren

    Dieses Buch erklärt, wie man mit R fortgeschrittene statistische Analysen durchführt. Die Techniken wurden dabei so ausgewählt, dass sie den Stoff im Masterstudiengang Psychologie und ähnlicher Studiengänge abdecken. In 10 eigenständigen Kapiteln werden die statistischen Verfahren anhand einführender und komplexer Datenbeispiele erläutert. Die Analyseergebnisse werden ausführlich interpretiert. Dabei legt das Buch besonderen Wert auf illustrative grafische Ergebnisdarstellungen. Auch die Voraussetzungen der Verfahren werden diskutiert und, soweit möglich, in R geprüft. Zu jedem Kapitel stehen Datendateien und ein R Script zur Verfügung, damit die Analyse schnell und unkompliziert nachvollzogen werden kann. Das Buch setzt Grundkenntnisse in R voraus und gibt ergänzende Literatur für die theoretischen Grundlagen und die Vertiefung für die fortgeschrittene Datenanalyse an. 

    Preis: 34.95 € | Versand*: 0 €
  • Datenanalyse mit R' Fortgeschrittene Verfahren
    Datenanalyse mit R' Fortgeschrittene Verfahren

    Dieses Buch erklärt, wie man mit R fortgeschrittene statistische Analysen durchführt. Die Techniken wurden dabei so ausgewählt, dass sie den Stoff im Masterstudiengang Psychologie und ähnlicher Studiengänge abdecken. In 10 eigenständigen Kapiteln werden die statistischen Verfahren anhand einführender und komplexer Datenbeispiele erläutert. Die Analyseergebnisse werden ausführlich interpretiert. Dabei legt das Buch besonderen Wert auf illustrative grafische Ergebnisdarstellungen. Auch die Voraussetzungen der Verfahren werden diskutiert und, soweit möglich, in R geprüft. Zu jedem Kapitel stehen Datendateien und ein R Script zur Verfügung, damit die Analyse schnell und unkompliziert nachvollzogen werden kann. Das Buch setzt Grundkenntnisse in R voraus und gibt ergänzende Literatur für die theoretischen Grundlagen und die Vertiefung für die fortgeschrittene Datenanalyse an. 

    Preis: 34.95 € | Versand*: 0 €
  • Was sind die wichtigsten Methoden und Anwendungen von Textmining in der heutigen Datenanalyse?

    Die wichtigsten Methoden von Textmining sind die Extraktion von Informationen aus unstrukturierten Texten, die Klassifizierung von Texten nach bestimmten Kategorien und die Sentimentanalyse zur Bewertung von Meinungen und Stimmungen. Anwendungen von Textmining in der Datenanalyse umfassen die automatische Zusammenfassung von Texten, die Identifizierung von Trends und Mustern in großen Textdatensätzen sowie die Erkennung von Spam in E-Mails und sozialen Medien. Textmining wird auch für die automatische Übersetzung von Texten, die Erkennung von Fakten in medizinischen Berichten und die Personalisierung von Empfehlungssystemen verwendet.

  • Was sind typische Fehlerquellen in der Datenanalyse und wie können sie vermieden werden?

    Typische Fehlerquellen in der Datenanalyse sind unvollständige oder fehlerhafte Daten, Auswahl- oder Stichprobenfehler und unzureichende Validierung der Analysemethoden. Diese können vermieden werden, indem man Daten sorgfältig überprüft, eine repräsentative Stichprobe auswählt und die Analyseergebnisse mit anderen Methoden oder Experten überprüft. Es ist auch wichtig, klare Hypothesen zu formulieren und die Analyse transparent zu dokumentieren.

  • Was sind die Vorteile und Herausforderungen beim Einsatz von Clustern in der Datenanalyse?

    Die Vorteile von Clustern in der Datenanalyse sind die Möglichkeit, Muster und Gruppierungen in großen Datensätzen zu identifizieren, die Effizienz bei der Verarbeitung großer Datenmengen und die Verbesserung der Datenvisualisierung. Die Herausforderungen liegen in der Auswahl der richtigen Anzahl von Clustern, der Interpretation der Ergebnisse und der Notwendigkeit, die Qualität der Daten sicherzustellen. Es erfordert auch ein gewisses Maß an Fachwissen und Erfahrung, um Clusteranalyse erfolgreich durchzuführen.

  • Was ist Interpolation und wie wird sie in der Mathematik und Datenanalyse verwendet?

    Interpolation ist eine Methode zur Schätzung von Werten zwischen bekannten Datenpunkten. In der Mathematik wird sie verwendet, um die genaue Funktion zwischen den Datenpunkten zu bestimmen. In der Datenanalyse wird Interpolation verwendet, um fehlende Werte in einem Datensatz zu ergänzen oder um glattere Kurven zwischen den vorhandenen Datenpunkten zu erstellen.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.